106 research outputs found

    Entering the Digital Commons: Using Affinity Spaces to Foster Authentic Digital Writing in Online and Traditional Writing Courses

    Get PDF
    Despite the fact that the field of rhetoric and composition has been closely allied to the digital humanities for many years, instructors in these disciplines often remain on their own in terms of adopting, implementing, and evaluating digital technologies. While theoretical scholarship in digital rhetoric is advancing, instructional practices lag behind. Surveying 72 doctoral-granting rhetoric and composition programs, researchers found innovation in the implementation of new media comes primarily from solitary instructors (Anderson and McKee, 74). This article presents several ways in which writing instructors can leverage digital spaces to improve their pedagogies. In particular, the article focuses on digital spaces that James Gee calls “affinity spaces”. While Gee’s notion of affinity spaces often refers to gaming, the concept may be expanded to include virtual spaces that learners visit voluntarily such as blogs, ezines, social media sites, and digital backchannels. By leveraging such spaces, and implementing them using Michelene Chi and Ruth Wylie’s ICAP (Interactive, Constructive, Active, and Passive) framework, writing instructors can construct powerful learning environments. These digital spaces are not only part and parcel of the digital humanities; they are prime territory for engaging students in rhetorical processes – whether analyzing rhetorical messages or generating rhetorical artifacts

    LXD: Ten Critical Differences Between LX and UX

    Get PDF
    The term “Learner Experience Design” is beginning to gain currency. Yet, there is little agreement over what that term means. Is it just user experience design for learners? In my opinion, LX design differs from UX design in ten important ways. Taken together, these differences make the job of learning experience designers quite distinct from the job of user experience designers

    Disk Imaging Survey of Chemistry with SMA (DISCS): I. Taurus Protoplanetary Disk Data

    Full text link
    Chemistry plays an important role in the structure and evolution of protoplanetary disks, with implications for the composition of comets and planets. This is the first of a series of papers based on data from DISCS, a Submillimeter Array survey of the chemical composition of protoplanetary disks. The six Taurus sources in the program (DM Tau, AA Tau, LkCa 15, GM Aur, CQ Tau and MWC 480) range in stellar spectral type from M1 to A4 and offer an opportunity to test the effects of stellar luminosity on the disk chemistry. The disks were observed in 10 different lines at ~3" resolution and an rms of ~100 mJy beam-1 at ~0.5 km s-1. The four brightest lines are CO 2-1, HCO+ 3-2, CN 2_3-1_2 and HCN 3-2 and these are detected toward all sources (except for HCN toward CQ Tau). The weaker lines of CN 2_2-1_1, DCO+ 3-2, N2H+ 3-2, H2CO 3_03-2_02 and 4_14-3_13 are detected toward two to three disks each, and DCN 3-2 only toward LkCa 15. CH3OH 4_21-3_12 and c-C3H2 are not detected. There is no obvious difference between the T Tauri and Herbig Ae sources with regard to CN and HCN intensities. In contrast, DCO+, DCN, N2H+ and H2CO are detected only toward the T Tauri stars, suggesting that the disks around Herbig Ae stars lack cold regions for long enough timescales to allow for efficient deuterium chemistry, CO freeze-out, and grain chemistry.Comment: 29 pages, 4 figures, accepted for publication in Ap

    Chemistry of a Protoplanetary Disk with Grain Settling and Ly_ Radiation

    Full text link
    We present results from a model of the chemical evolution of protoplanetary disks. In our models, we directly calculate the changing propagation and penetration of a high energy radiation field with Ly_ radiation included. We also explore the effect on our models of including dust grain settling. We find that, in agreement with earlier studies, the evolution of dust grains plays a large role in determining how deep the UV radiation penetrates into the disk. Significant grain settling at the midplane leads to much smaller freeze-out regions and a correspondingly larger molecular layer, which leads to an increase in column density for molecular species such as CO, CN, and SO. The inclusion of Ly_ radiation impacts the disk chemistry through specific species that have large photodissociation cross sections at 1216 Å. These include HCN, NH 3 , and CH 4 , for which the column densities are decreased by an order of magnitude or more due to the presence of Ly_ radiation in the UV spectrum. A few species, such as CO 2 and SO, are enhanced by the presence of Ly_ radiation, but rarely by more than a factor of a few.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90767/1/0004-637X_726_1_29.pd

    Disk Imaging Survey of Chemistry with SMA: II. Southern Sky Protoplanetary Disk Data and Full Sample Statistics

    Full text link
    This is the second in a series of papers based on data from DISCS, a Submillimeter Array observing program aimed at spatially and spectrally resolving the chemical composition of 12 protoplanetary disks. We present data on six Southern sky sources - IM Lup, SAO 206462 (HD 135344b), HD 142527, AS 209, AS 205 and V4046 Sgr - which complement the six sources in the Taurus star forming region reported previously. CO 2-1 and HCO+ 3-2 emission are detected and resolved in all disks and show velocity patterns consistent with Keplerian rotation. Where detected, the emission from DCO+ 3-2, N2H+ 3-2, H2CO 3-2 and 4-3,HCN 3-2 and CN 2-1 are also generally spatially resolved. The detection rates are highest toward the M and K stars, while the F star SAO 206462 has only weak CN and HCN emission, and H2CO alone is detected toward HD 142527. These findings together with the statistics from the previous Taurus disks, support the hypothesis that high detection rates of many small molecules depend on the presence of a cold and protected disk midplane, which is less common around F and A stars compared to M and K stars. Disk-averaged variations in the proposed radiation tracer CN/HCN are found to be small, despite two orders of magnitude range of spectral types and accretion rates. In contrast, the resolved images suggest that the CN/HCN emission ratio varies with disk radius in at least two of the systems. There are no clear observational differences in the disk chemistry between the classical/full T Tauri disks and transitional disks. Furthermore, the observed line emission does not depend on measured accretion luminosities or the number of infrared lines detected, which suggests that the chemistry outside of 100 AU is not coupled to the physical processes that drive the chemistry in the innermost few AU.Comment: accepted for publication in ApJ, 41 pages including 7 figure

    Far-Ultraviolet H_2 Emission from Circumstellar Disks

    Get PDF
    We analyze the far-ultraviolet (FUV) spectra of 33 classical T Tauri stars (CTTS), including 20 new spectra obtained with the Advanced Camera for Surveys Solar Blind Channel (ACS/SBC) on the Hubble Space Telescope. Of the sources, 28 are in the ~1 Myr old Taurus-Auriga complex or Orion Molecular Cloud, 4 in the 8-10 Myr old Orion OB1a complex, and 1, TW Hya, in the 10 Myr old TW Hydrae Association. We also obtained FUV ACS/SBC spectra of 10 non-accreting sources surrounded by debris disks with ages between 10 and 125 Myr. We use a feature in the FUV spectra due mostly to electron impact excitation of H_2 to study the evolution of the gas in the inner disk. We find that the H_2 feature is absent in non-accreting sources, but is detected in the spectra of CTTS and correlates with accretion luminosity. Since all young stars have active chromospheres which produce strong X-ray and UV emission capable of exciting H_2 in the disk, the fact that the non-accreting sources show no H_2 emission implies that the H_2 gas in the inner disk has dissipated in the non-accreting sources, although dust (and possibly gas) remains at larger radii. Using the flux at 1600 Å, we estimate that the column density of H_2 left in the inner regions of the debris disks in our sample is less than ~3 × 10^(–6) g cm^(-2), 9 orders of magnitude below the surface density of the minimum mass solar nebula at 1 AU

    The Far-Ultraviolet "Continuum" in Protoplanetary Disk Systems I: Electron-Impact H2 and Accretion Shocks

    Full text link
    We present deep spectroscopic observations of the classical T Tauri stars DF Tau and V4046 Sgr in order to better characterize two important sources of far-ultraviolet continuum emission in protoplanetary disks. These new Hubble Space Telescope-Cosmic Origins Spectrograph observations reveal a combination of line and continuum emission from collisionally excited H2 and emission from accretion shocks. H2 is the dominant emission in the 1400-1650 A band spectrum of V4046 Sgr, while an accretion continuum contributes strongly across the far-ultraviolet spectrum of DF Tau. We compare the spectrum of V4046 Sgr to models of electron-impact induced H2 emission to constrain the physical properties of the emitting region, after making corrections for attenuation within the disk. We find reasonable agreement with the broad spectral characteristics of the H2 model, implying N(H2) ~ 10^{18} cm^{-2}, T(H2) = 3000^{+1000}_{-500} K, and a characteristic electron energy in the range of ~ 50 - 100 eV. We propose that self-absorption and hydrocarbons provide the dominant attenuation for H2 line photons originating within the disk. For both DF Tau and V4046 Sgr, we find that a linear fit to the far-UV data can reproduce near-UV/optical accretion spectra. We discuss outstanding issues concerning how these processes operate in protostellar/protoplanetary disks, including the effective temperature and absolute strength of the radiation field in low-mass protoplanetary environments. We find that the 912-2000A continuum in low-mass systems has an effective temperature of ~10^{4} K with fluxes 10^{5-7} times the interstellar level at 1 AU.Comment: 14 pages, 8 figures, 3 tables. ApJ, accepte

    The Far-Ultraviolet "Continuum" in Protoplanetary Disk Systems II: CO Fourth Positive Emission and Absorption

    Get PDF
    We exploit the high sensitivity and moderate spectral resolution of the HSTHST-Cosmic Origins Spectrograph to detect far-ultraviolet spectral features of carbon monoxide (CO) present in the inner regions of protoplanetary disks for the first time. We present spectra of the classical T Tauri stars HN Tau, RECX-11, and V4046 Sgr, representative of a range of CO radiative processes. HN Tau shows CO bands in absorption against the accretion continuum. We measure a CO column density and rotational excitation temperature of N(CO) = 2 +/- 1 ×\times 1017^{17} cm2^{-2} and T_rot(CO) 500 +/- 200 K for the absorbing gas. We also detect CO A-X band emission in RECX-11 and V4046 Sgr, excited by ultraviolet line photons, predominantly HI LyA. All three objects show emission from CO bands at λ\lambda >> 1560 \AA, which may be excited by a combination of UV photons and collisions with non-thermal electrons. In previous observations these emission processes were not accounted for due to blending with emission from the accretion shock, collisionally excited H2_{2}, and photo-excited H2; all of which appeared as a "continuum" whose components could not be separated. The CO emission spectrum is strongly dependent upon the shape of the incident stellar LyA emission profile. We find CO parameters in the range: N(CO) 101819^{18-19} cm2^{-2}, T_{rot}(CO) > 300 K for the LyA-pumped emission. We combine these results with recent work on photo- and collisionally-excited H2_{2} emission, concluding that the observations of ultraviolet-emitting CO and H2 are consistent with a common spatial origin. We suggest that the CO/H2 ratio in the inner disk is ~1, a transition between the much lower interstellar value and the higher value observed in solar system comets today, a result that will require future observational and theoretical study to confirm.Comment: 12 pages, 7 figures, 3 tables. ApJ - accepte

    A Far-ultraviolet Atlas of Low-resolution Hubble Space Telescope Spectra of T Tauri Stars

    Full text link
    We present a far-ultraviolet (FUV) spectral atlas consisting of spectra of 91 pre-main sequence stars. Most stars in this sample were observed with the Space Telescope Imaging Spectrograph (STIS) and Advanced Camera for Surveys (ACS) on the \emph{Hubble Space Telescope} (\emph{HST}). We find strong correlations among the \ion{O}{1} λ\lambda1304 triplet, %\ion{C}{2} λ\lambda1335, the \ion{Si}{4} λλ\lambda\lambda1394/1403 doublet, the \ion{C}{4} λ\lambda1549 doublet, and the \ion{He}{2} λ\lambda1640 line luminosities. For classical T Tauri stars (CTTSs), we also find strong correlations between these lines and the accretion luminosity, suggesting that these lines form in processes related to accretion. These FUV line fluxes and X-ray luminosity correlate loosely with large scatters. The FUV emission also correlates well with Hα\alpha, Hβ\beta, and \ion{Ca}{2} K line luminosities. These correlations between FUV and optical diagostics can be used to obtain rough estimates of FUV line fluxes from optical observations. Molecular hydrogen (H2_{2}) emission is generally present in the spectra of actively accreting CTTSs but not the weak-lined T Tauri stars (WTTSs) that are not accreting. The presence of H2_2 emission in the spectrum of HD 98800 N suggests that the disk should be classified as actively accreting rather than a debris disk. The spectra in the atlas are available at http://archive.stsci.edu/prepds/ttauriatlas.Comment: 89 pages, 30 figures, published in Ap
    corecore